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T he gap between medical research on diagnostic testing and clinical workflow can lead to rejection of valuable medical
research in a busy clinical environment due to increased workloads, or rejection of medical research in the laboratory

that may be valuable in practice due to a misunderstanding of the system-level benefits of the new test. This has implica-
tions for research organizations, diagnostic test manufacturers, and hospital managers among others. To bridge this gap,
we develop a Markov decision process (MDP) from which we create “adoption regions” that specify the combination of
test characteristics medical research must achieve for the test to be feasible for adoption in practice. To address the curse
of dimensionality from patient risk stratification, we develop a decomposition algorithm along with structural properties
that shed light on which patients and when a new diagnostic test should be used. In a case study of a partner Emergency
Department, we show that the conventional myopic medical criterion can lead to poor decision making in both research
development and clinical practice. In particular, we find that specificity—long a secondary consideration and often over-
looked in the research process—is, in fact, the key to effective implementation of new tests into clinical environments. This
myopic approach can lead to overvaluing or undervaluing new medical research. This mismatch is accentuated when a
simple (current) policy is used to integrate research into the clinical environment compared with our MDP’s policy—poor
implementation of a new test can also lead to unnecessary rejection. Our framework provides easily interpretable guideli-
nes for medical research development and clinical adoption decisions that can guide medical research as to which test
characteristics to focus on to improve the chances of adoption.
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1. Introduction

An important area of medical research focuses on the
development of new diagnostic tests for prevalent
diseases. The development of a new test usually takes
place in a clinically controlled environment and
focuses primarily on the sensitivity and specificity of
the test. However, the interactions with existing
workflows when introducing a new test into clinical
practice are largely ignored during the research
phase. This can lead to resistance toward adopting
new tests into already hectic hospital environments
such as the Emergency Department (ED). For exam-
ple, using a new test with high sensitivity but low
specificity will produce many false positive results,

which leads to an excessive amount of follow-up test-
ing, increasing patient length-of-stay, staff workload
and ED congestion. In section 1.1, we discuss testing
for pulmonary embolism (PE) as an example of this
pitfall, which is brought to us by our clinical collabo-
rator (an ED physician) and motivates this research.
In that section, we also extend our discussion to the
broader implications to the healthcare industry. This
research aims to bridge the gap between medical
research and workflow management by considering
(i) the decision of adopting a new test and (ii) how to
integrate a new test into existing clinical workflows.
To answer these two research objectives, we

develop an analytical framework for evaluating the
impact of introducing a new diagnostic test into a
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busy hospital environment. This framework accounts
for both the clinical and operational implications of
the new test by capturing several key tradeoffs at the
patient level (e.g., harmful tests avoided vs. misdiag-
nosis rate) as well as the system level (e.g., reduced
workload at the original test vs. increased chance of
double testing). We define two adoption criteria—
medical and operational—to study the impact of test
characteristics on whether a new test will be adopted
in practice. Using these criteria, we define adoption
regions to demonstrate how different test characteris-
tics affect test adoption. Our framework for evaluat-
ing the adoption regions and analyzing the manner of
integration of a new test is a queueing-based Markov
decision process (MDP) from which we obtain opti-
mal routing decisions regarding which patients should
receive the new test and when the new test should be
used. Through a case study with real data from our
collaborating ED, we demonstrate how ignoring the
operational aspects can lead to erroneous estimates of
the value of new tests in the clinical environment out-
side the laboratory. More broadly, we identify how
each of the characteristics of the new test and the
manner of integration (use of the new test) contribute
to adoption. This analysis provides general guidance
for (1) the medical research process in terms of which
test characteristics medical researchers should focus
on to improve chances of adoption and (2) how new
tests should be used in practice.

1.1. Implications for the Healthcare Industry
The adoption of new diagnostic tests, or lack
thereof, has implications for numerous players in
the healthcare industry. Rejection of new tests leads
to wasted efforts in the medical research space in
terms of researcher time and money for laboratory
space, equipment, and clinical testing. Beyond the
research efforts, diagnostics manufacturers have a
strong vested interest in having their tests widely
used and adopted. Better understanding what fac-
tors impact this adoption can help them better
design their new products and demonstrate the
broader benefits to potential customers. Hospital
management also strives to improve both the qual-
ity of care as well as patient throughput. Identifying
the right set of tests to adopt and how to integrate
them into clinical workflow can help improve both
of these metrics. Next, we use a concrete example
of diagnosing PE in an ED to illustrate the gap
between medical research on diagnostic testing and
the adoption of a new test in the actual environ-
ment in which it will be used. In particular, we
show that the system-level congestion effect is often
ignored in medical research, but plays a critical role
in the adoption decision. Gaining insights into this
problem necessitates the development of a

sophisticated analytical framework considering both
the medical and the operational implications.
Diagnosis of pulmonary embolism (PE). When

patients present to the ED exhibiting symptoms such
as chest pain and shortness of breath, they are sus-
pected of having PE. In current practice, a pretest sur-
vey asks a series of questions, which are subsequently
scored. If the score, called the pretest probability, is
above a predefined threshold, patients are sent to
have a CT scan to confirm whether they do indeed
have PE. Unfortunately, CT imaging is associated
with an increased lifetime risk of cancer from ionizing
radiation and, albeit rare, severe reactions that can
result in kidney failure or even cardiopulmonary col-
lapse and death. Within this context, our clinical
research collaborator is interested in introducing a
new test, called D-dimer, to avoid unnecessary CT
scans. This test is a fast, simple blood test and has a
high sensitivity. It can be used to rule out patients who
do not have PE and thus mitigate the risk of adverse
effects from the CT dye and reduce the workload bur-
den on the CT, which is one of the ED’s most heavily
utilized and most expensive diagnostic resources.
The CT test is highly accurate, and, for simplicity,

we assume it is a perfect test in diagnosing PE in the
rest of the study. The D-dimer test, in contrast, is an
imperfect test with high sensitivity but moderate
specificity. Thus, a patient with a positive D-dimer
test result will still be sent to the CT for confirmation.
According to our medical collaborator, the moderate
specificity of the D-dimer raises concerns about the
adoption of this new test by ED physicians, in spite of
the obvious benefits of ruling-out healthy patients
and reducing unnecessary CT scans. The higher false
positive rate causes many patients to be unnecessarily
routed to the CT for confirmation, resulting in double
testing. Consequently, introducing this test may
increase delays to patient discharge and increase the
workload and size of each doctor’s panel of patients.
This is a strong barrier to adoption, since physicians
are reluctant to use additional testing if they view it
as a workload burden. We provide an example of this
adoption tradeoff below with numerical results for PE
diagnosis in our partner ED.
Medical criterion: the current practice. In the med-

ical literature, a widely accepted criterion for adopt-
ing a new diagnostic test focuses on the post-test
probability, defined as the probability that a patient
with a negative test result actually has the disease.
For example, Kohn et al. (2017) suggests an upper
bound of 3% post-test probability for PE diagnostic
tests, which translates into <3% of PE cases being
“missed” by the test. Figure 1a shows the test adoption
region based on this criterion in terms of which values
of sensitivity and specificity that a new test for PE
must achieve to satisfy this medical criterion;
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parameters are estimated from our collaborating ED
(details are provided in section 6). The region above
the dotted line indicates clinically acceptable levels of
sensitivity and specificity (i.e., adoption region), and
the region below the line indicates no adoption due to
a post-test probability above the required clinical
threshold.
Operational criterion: accounting for congestion

and health outcomes. Despite its obvious clinical
value as observed in Figure 1a, the D-dimer is not uni-
versally implemented in EDs. A possible reason is the
aforementioned issue of increased workloads due to
double testing. We therefore consider a criterion that
focuses solely on ED throughput time, which reflects
patient delays and doctor workload, should be
reduced after adopting the new test. Figure 1b super-
imposes this criterion as vertical lines on top of the
medical criterion, where points to the right of these
lines (adoption boundaries) indicate values of sensi-
tivity and specificity that the new test must achieve to
avoid rejection of the new test due to increased
patient delays. The vertical dashed line corresponds
to the adoption boundary under the current practice
of routing all low-risk patients to D-dimer and rout-
ing medium- and high-risk patients directly to the
CT. The D-dimer dot indicates that there may be resis-
tance to adoption due to increased doctor workloads,
which may explain why some hospitals are hesitant
to adopt the D-dimer. The solid line shows the adop-
tion boundary under the optimal routing based on the
MDP developed in this study. Under the optimal
routing, the D-dimer would meet the requirement of
throughput time reduction for adoption. This high-
lights the importance not only of characteristics of the
test, but also of the manner of integration into the

clinical workflow for the adoption decision. The effect
of routing is further exacerbated if the new test were
slower as we will discuss later in this study.
This example shows that, without a sophisticated

analytical framework that considers both the medical
and congestion effects, medical researchers may think
their new test is sufficiently accurate (satisfying the
accepted medical criterion) only to find physicians
reluctant to use it in practice due to the associated work-
load burden. Meanwhile, physicians may reject some
tests that could be valuable in practice due to poor inte-
gration of the test into the hospital workflow. In this
study, we present an operational framework that takes
a holistic perspective to account for both the medical
and congestion effects. Within this framework, we
define an operational criterion that unifies the ED
throughput time and congestion concerns with multiple
health outcomes (misdiagnosis and unnecessary CT).

1.2. Contributions and Overview of the Paper
In this research, we make the following technical and
practical contributions.
Analytical framework. We develop an analytical

framework that captures critical tradeoffs not previ-
ously considered in the adoption of medical research
in practice, which can lead to poor decision making in
both research development and clinical practice. Our
framework specifically accounts for tradeoffs at: (1) the
patient level: misdiagnosis vs. adverse effects of the
current test; and (2) the system level: longer through-
put time caused by overcrowding at the current test
vs. double testing caused by introducing the new test.
Using this framework, we develop novel, easily inter-
pretable adoption region plots that demarcate the
boundaries for adoption based on test characteristics,

Adoption

No Adoption

(a) (b)

Figure 1 Criterion-based Test Adoption Decision. The dotted lines in both plots represent the boundary to achieve <3% misdiagnosis for (low-risk)
PE patients. In plot (b), the solid and dashed vertical lines represent the boundaries to achieve at least 7.5% reduction in the average
throughput time using the dynamic and static routing policies, respectively [Color figure can be viewed at wileyonlinelibrary.com]
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which can be used to guide both research development
and clinical adoption decisions.
MDP and algorithm. We formulate a queueing-

based MDP that captures these tradeoffs through dif-
ferent costs. Importantly, we show that the different
adoption criteria are unified via the MDP cost objec-
tive function, allowing us to compute adoption
regions and to capture different methods of integrat-
ing the new test into the existing clinical environment.
Our model captures important features in the ED

patient flow, incorporating patient heterogeneity into
a queueing model that covers a number of commonly
used queues to reflect different types of testing envi-
ronments. Including these features leads to the curse
of dimensionality in the MDP. Thus, we develop a
decomposition algorithm based on a multi-step policy
improvement approach that leverages a class of static
routing policies to significantly reduce the state space
size. Via extensive numerical studies, we show this
algorithm is near optimal; among all the numerical
experiments, the largest optimality gap is <1.50%. In
addition, we derive useful structural properties that
lead to managerial insights about the dominance
among different patient classes: if the negative (posi-
tive) result is more accurate, it is preferable to use the
test on low-risk (high-risk) patients to rule out (con-
firm) the disease.
Test adoption and integration. The purpose of the

MDP is to provide an analytical framework for evalu-
ating the impact of introducing a new test into a clini-
cal environment. The main research output from this
analytical framework is the test adoption region
under the various adoption criteria as illustrated in
Figure 1. This model-based evaluation mechanism is
critical because a main finding of this study is that a
test should not be evaluated in an isolated laboratory
environment, but instead should be considered in the
actual system context in which it will be used. This
requires an analytical model capturing patient flow in
the full system. Via a case study of diagnosing PE in
EDs using data from our partner hospital, we show
that the traditional way of measuring test value in the
isolated clinical laboratory can in fact overlook both
congestion effects and health outcomes.

• Operational performance: Focusing solely on the
medical criterion can either overvalue (introduc-
ing a test that may not be adopted) or under-
value (rejecting a test that should be adopted) a
new test. The medical criterion overvalues a test
with high sensitivity and low specificity (com-
mon in practice) by ignoring the operational
inefficiency of double-testing, which can lead to
lack of adoption in practice. With high speci-
ficity and low sensitivity, the medical criterion
may undervalue a new test, causing the clinical

community to reject a test which may have sig-
nificant operational benefits that could outweigh
a slightly higher misdiagnosis rate.

• Medical effects: Another failure of the medical
criterion is that it only considers the individual
misdiagnosis rate while overlooking the benefits
of avoiding the current test (e.g., CT), which
may have serious health implications (e.g.,
exposure to radiation and adverse health
events). Furthermore, the current definition of
misdiagnosis rate ignores the effect of sequen-
tial testing, which can lead to unnecessary rejec-
tion of valuable research.

• Test integration: We show that the manner in
which the new test is integrated into the clinical
workflow can have a significant effect on the
test’s value and feasibility for adoption. When
the new test is slow or the specificity is low, the
test may be rejected under the current (static)
practice, while the dynamic MDP policy can
take advantage of fluctuations in ED workload
to extract medical and operational benefits that
would otherwise be lost due to poor implemen-
tation.

• Driver of adoption and integration: Surprisingly,
we find that specificity, which has long been a
secondary consideration in medical research
due to a weaker impact on the current medical
measure of a test’s value, is in fact the key to
unifying the medical and operational value of
new tests. Specificity has a major impact on
how effectively a new test can be integrated
into an existing clinical environment, which
cannot be measured in an isolated laboratory
environment. Hence, we find that specificity has
significant implications for adoption into prac-
tice that are currently overlooked.

Figure 2 summarizes the main components of the
research framework developed in this study.

2. Literature Review

We give a brief review of the related literature.
Dynamic control of queueing systems. Our model-

ing and routing decision connects with the literature
on dynamic control of queueing systems (e.g., Stid-
ham 1985, Stidham Jr and Weber 1993). There is a rich
body of research on admission control via MDP tech-
niques, for example, Miller (1969), Yoon and Lewis
(2004), Zhang and Ayhan (2013), to name a few. Koole
(2007) provides a comprehensive survey and the
event-based operator technique for proving structural
properties of MDPs for control of queueing systems.
The work most relevant to ours is that of Hajek (1984),
who studies the dynamic routing decision in a two-
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station queueing network, that is, which station
should an arriving customer be sent to. Hajek (1984)
shows that the structure of the optimal routing deci-
sion is of threshold form. A key difference to our
model is that we consider a general queueing setup
with a state-dependent service-rate function for each
station, which is more general than their single-server
setting with constant service rate. In general, it is chal-
lenging to characterize the optimal routing policy in
settings beyond the single-server one, so we focus on
establishing that there exists a dominance among dif-
ferent classes in the optimal policy. In addition, we
also consider routing based on the outcome of the test
in the first station which Hajek (1984) did not study.
MDP is also widely used for optimizing patient
screening/triage and routing in resource-limited
healthcare environments; for example, Argon and
Ziya (2009), €Ormeci et al. (2015), Sun et al. (2017), Hu
et al. (2019). Also see Chapter 14 in Dai and Tayur
(2018) for a detailed review of MDP applications in
healthcare operations.
Diagnostic decision making in OM. Wang et al.

(2010) study the staffing and service depth decisions
of a nurse triage line in which the patients decide
whether to call the line or not based on their expecta-
tions of diagnostic accuracy and congestion. They
focus on the equilibrium analysis between the provi-
der and patients. Alizamir et al. (2013) study the
tradeoff between test accuracy and system congestion
in a diagnostic process, in which the service provider
conducts multiple tests to determine the customer’s
type. They consider the dynamic decision making of
whether to run more tests or to stop the process and
identify the customer’s type. Our paper focuses on
the routing between multiple tests while the sequence
of tests to conduct is predetermined in their paper.
More broadly speaking, our paper relates to the well-
known speed-quality tradeoff in service operations,
that is, the service quality (diagnostic accuracy) dif-
fers with the speed of the service (time to finish a test).

Shumsky and Pinker (2003) model a gatekeeper who
makes an initial diagnosis of the customer’s problem
and decides whether to refer the customer to a spe-
cialist. They focus on the information asymmetry
between the gatekeeper and the specialist and use a
principal-agent framework. Hasija et al. (2005) extend
their model to include queueing at both the gate-
keeper and the expert. They solve for optimal staffing
levels and referral rates between gatekeeper and
expert from a centralized perspective.
Diagnostic decision making in clinical literature.

Diagnostic decision making has been studied exten-
sively in the medical literature (e.g., Barrows and
Pickell 1991, Bordage 1994, Guyatt et al. 2002, Kas-
sirer et al. 1991). Guyatt et al. (1986) provide a general
framework for clinical evaluation of diagnostic tech-
nologies. Most of these studies are developed in a
clinically controlled environment, without consider-
ing the interactions with existing workflows. In this
study, we explicitly consider the operational effects
relevant to diagnostic decision making. Regarding
PE, the motivating case brought to us from our part-
ner ED, Fesmire et al. (2011) provide the clinical pol-
icy from the American College of Emergency
Physicians on the diagnosis of patients presenting
with suspected PE. In particular, they discuss the role
of the D-dimer test in the exclusion of PE. Given the
fact that the sensitivity of the D-dimer test is very high
and its specificity is moderate, the D-dimer test is sug-
gested to be used on low-risk patients (see Fesmire
et al. 2011, Qaseem et al. 2007, Segal et al. 2007).

3. Analytical Framework for
Evaluating Test Adoption and
Integration

In this section, we introduce the analytical framework
for answering our research questions. In section 3.1,
we present the general queueing setup for modeling

Adoption
Criterion

Operational

Medical

MDP for
Routing Patients

How to integrate the new test into
existing workflow
(Routing Policy)

Whether to adopt the new test
(Adoption Region)

Objective meets
adoption criterion

Figure 2 Overview of the Paper [Color figure can be viewed at wileyonlinelibrary.com]
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the patient flow with one perfect, existing test (e.g.,
CT scan), and an imperfect, potential new test. In sec-
tion 3.2, we introduce the adoption criteria and define
the test adoption regions to determine when a test
would be adopted. In section 3.3, we present an MDP
framework to derive the optimal routing policy under
a cost-based objective that unifies these adoption cri-
teria, and we address how a new test should be inte-
grated into clinical workflows.

3.1. Patient Flow Model
We consider J classes of patients, capturing different
levels of patient risk of having a suspected disease
(e.g., PE). Without loss of generality, we assume that
the pretest probability of having the disease is lowest
for class 1 patients, and highest for class J patients:
p10 \ p20 \ � � � \ pJ0, where p

j
0 is the pretest probability

for class j patients. We also assume that the lowest
risk class passes the minimum threshold for undergo-
ing testing, such that all patients we consider here
need to receive at least one test.
Figure 3 shows the patient flow when there are two

tests available—denoted as two stations in our model.
The first station represents an “imperfect test,” and
the second station represents a “perfect test.” Here, an
imperfect test (e.g., the D-dimer test) means the test
may give a false positive or a false negative result,
while a perfect test (e.g., the CT scan) does not. Each
patient may go through station 1 only, station 2 only,
or station 1 and then station 2, before leaving the sys-
tem. Note that leaving the system (departure) does
not necessarily mean that the patient is discharged
home; it could be sending the patient for treatment if
the patient is diagnosed to have the suspected dis-
ease. We assume the test at the second station is per-
fect for two reasons. First, it allows us to gain insights

under the largest differentiation between the two
types of tests. Second, according to our clinical collab-
orator, assuming a perfect follow-up test is a good
approximation of reality. Making the test “close to
perfect” would complicate the analysis, but add little
additional insight.
We model the patient flow through the two tests as

a queueing network with two stations. We adopt a
queueing model for each station that covers a number
of commonly used queueing structures, which can
reasonably capture different types of testing environ-
ments. For example, our framework encompasses M/
M/k for the case where there are multiple diagnostic
machines at a station, M/M/1 for the case where
there is only one diagnostic machine, and processor-
sharing queues for more complex settings such as
batch testing, preemptive STAT (urgent priority) test-
ing, and time-varying availability of testing equip-
ment, all of which can occur in ED settings. Next, we
detail the arrival and service processes for our queue-
ing framework.
Arrival process. Arrivals for each of the J classes

form independent Poisson processes. We assume the
arrival rate of class j is �j, j = 1,. . .,J. The modeling
framework can be extended to incorporate time-vary-
ing arrival rates using the pointwise stationary
approximation; see details in section 7.2. For ease of
exposition, we focus on the time-homogeneous case
when introducing the framework. Let � ¼ P

j �
j

denote the total arrival rate of the J classes. In addition
to these patients with the suspected disease, we con-
sider patients who may use each station for other rea-
sons. The exogenous arrivals to station i also follow a
Poisson process with rate �ex

i ; i ¼ 1; 2.
Service process. A patient starts receiving service

once being admitted to the service station (upon

Station 1

Station 2 

Arrival 
Routing

Arrival: 
J class patients (1, … , )
Poisson Process

Departure

Departure

Departure
Routing

Exogenous Arrival

Exogenous Arrival

Figure 3 Basic Patient Flow [Color figure can be viewed at wileyonlinelibrary.com]
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arrival or after waiting). The service process has the
following properties. The service completion process
during the busy period follows a time-nonhomoge-
neous Poisson process with a general, state-depen-
dent service rate function liðsiÞ, where si is the total
number of patients in service at station i. When a
service completion event occurs, a patient in service
is randomly chosen to depart, that is, the service
rate of each patient in service is liðsiÞ=si. The service
rate function satisfies the following: the total service
rate liðsiÞ is non-decreasing in si; an individual
patient’s service rate liðsiÞ=si is non-increasing in si;
and the total service rate liðsiÞ is bounded by �li.
This service setting covers commonly used queues
for modeling service stations in healthcare research,
for example,

• M/M/1 queue, where liðsiÞ ¼ l if si ¼ 1 and 0
if si ¼ 0 (l is the service rate of the single ser-
ver),

• M/M/k queue, where liðsiÞ ¼ l � si ð0 � si � kÞ,
l is the service rate of each of the k servers, and
liðsiÞ is thus bounded by kl,

• Processor-sharing queue, where each patient is
admitted to service upon arrival and gets a uni-
form share of the total service capacity, that is,
each patient’s service rate is liðsiÞ=si.

Service discipline. In scenarios where patients
may need to wait, we adopt the random-processing
service discipline when choosing a waiting patient
to admit upon a service completion. In multi-class
queues, it is shown that the random-processing ser-
vice discipline leads to the same steady-state distri-
bution as the first-in first-out (FIFO) discipline
under Poisson arrivals and the service process set-
ting described above (Buitenhek et al. 1997). This
leads to the same performance measures such as the
mean number of patients in service or in the queue.
Since these are the main operational performance
measures used in our decision model, the two disci-
plines are equivalent, particularly from the system
perspective since we focus on system-level opera-
tional performance measures as opposed to tracking
each individual patient. We adopt the random-pro-
cessing service discipline since it allows a more par-
simonious state space (we do not need to track the
order of each patient in the queue).
We present our decision framework and solution

algorithm using the general queueing setting
described above for the rest of this section and in sec-
tions 4 and 5. In the case study in section 6, however,
we focus on the processor-sharing queue setting and
parameterize the model accordingly. The processor-
sharing queue can be viewed as an infinite-server
queue with state-dependent service rate function
liðsiÞ=si for each patient, which has been shown to

have the flexibility to model complicated healthcare
systems while approximating the actual system per-
formance reasonably well (Armony et al. 2015, Whitt
and Zhang 2017). We choose this approach for our
case study because it allows us to closely replicate the
empirical distribution of test occupancy levels, which
cannot be achieved with the M/M/1 queue (e.g., see
Figure 4 later in section 6.1).

3.2. Adoption Criteria and Adoption Regions
Diagnostic tests possess a set of characteristics that
affect their medical and operational value. We define
these characteristics using the tuple

C :¼ ðbþ; b�; l1ðxÞÞ; ð1Þ
where bþ and b�, respectively, are the sensitivity
and specificity of the new test that could potentially
be class-dependent, and l1ðxÞ is the service rate of
the new test if there are x patients at the test. We
reserve the notation l2ðxÞ for the existing test (at sta-
tion 2). Let U ¼ fC : bþ; b� 2 ½0; 1�; l1ðxÞ 2 ½0; �l1�
8xg be the set of all feasible test characteristics.
We define the adoption criterion fp : U ! ½0; 1� as

a function that maps test characteristics to a quantita-
tive measure of efficacy between 0 and 1 under a rout-
ing policy p. We say that a test with characteristics C
is adopted at a level e if fpðCÞ � �. That is, e is the min-
imum level (lower bound) of efficacy that must be
achieved for the test to be adopted under criterion fp.
We now formally define what we call an adoption
region, which determines the set of all test characteris-
tics that satisfy the criterion.

DEFINITION 1. (ADOPTION REGION).

A ¼ fC 2 U : fpðCÞ� �g ð2Þ

0    1     2    3    4     5    6     7    8     9   10   11  12 13
Number of patients
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)
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2 (x) = 0.9x0.5

2 (x) = 1.91

Figure 4 Histogram of Patient Occupancy in CT. The x-axis numerates
the possible states, that is, the number of patients waiting
or receiving CT, and the y-axis corresponds to the frequency
of the state
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Next, we define three different criteria to specify
the functional form of fpðCÞ.
In the medical literature, the criterion for an

acceptable diagnostic test follows the “rule-out”
approach: the post-test probability of being sick,
given a negative test result, should be <a. That is,
a doctor should be confident with at least 1 � a
chance that any patient who is routed to the test
and receives a negative test result does not have
the disease. Mathematically, this criterion is defined
as follows.

ADOPTION CRITERION 1. (MEDICAL CRITERION). For a
given a 2 [0,1], the medical criterion is defined as

fpMðCÞ :¼ 1� p0ð1� bþÞ
p0ð1� bþÞ þ ð1� p0Þb� � 1� a: ð3Þ

We use 1 � a to be consistent with the general form
in Equation (2). Here, p0 is the highest pretest proba-
bility among all patients that policy p chooses to route
to the new (imperfect) test. For example, for the D-
dimer test, we consider in the case study, the medical
practice suggests it should be used on low-risk
patients, thus, p0 ¼ p10. Criterion (1) is equivalent to

1� bþ

b�
\

að1� p0Þ
ð1� aÞp0 ; ð4Þ

where ð1 � bþÞ=b� is called the negative likelihood
ratio in the medical literature; see Penaloza et al.
(2012) for an example. Kohn et al. (2017) suggest 3%
(a = 0.03) as an appropriate threshold for the medi-
cal efficacy of the D-dimer test in our case study.
For a given a, the boundary of the adoption region
can be simply obtained by solving (3), which has
the solution

bþ þ að1� p0Þ
ð1� aÞp0 b

� ¼ 1: ð5Þ

From (5), we see that sensitivity is a more powerful
lever than specificity in satisfying the medical crite-
rion. This may explain why the current medical
research often focuses on improving test sensitivity.
For example, in discussing the efficacy of artemisinin-
based combination treatments such as Davis et al.
(2005), sensitivity is the major consideration. How-
ever, if one considers the doctor workload and system
congestion, specificity becomes important to avoid
excessive double testing from false positives. To
capture this effect, we next introduce the congestion
criterion.
Analogous to the medical criterion, the congestion

criterion only considers one aspect of the testing

system: ED throughput time. This congestion criterion
demarcates the largest region in which the test would
be considered acceptable solely from reducing doctor
workload and patient delays.

ADOPTION CRITERION 2. (CONGESTION CRITERION). Let
E½T0� and E½TpðCÞ�, respectively, denote the average
throughput time for all ED patients before and after
adopting a test with characteristics C, using routing pol-
icy p. For a given b 2 [0,1], the congestion criterion is
defined as

fpWðCÞ :¼ E½T0� � E½TpðCÞ�
E½T0� � b: ð6Þ

This criterion requires that the average patient
throughput time is reduced (relatively) by at least b
after adopting the new test. By Little’s Law, through-
put time linearly maps to physician workload. The
average throughput time depends on how the new
test is integrated into the existing workflow, that is,
the routing policy p.
Lastly, we define the holistic operational criterion,

which considers both congestion and the health out-
comes such as misdiagnosis and health costs of
unnecessary CT testing. This criterion optimizes the
long-run average cost from the MDP framework to be
introduced in section 3.3.

ADOPTION CRITERION 3. (OPERATIONAL CRITERION). Let
VCT and Vp

adoptðCÞ, respectively, denote the long-run
average cost before and after adopting a test with charac-
teristics C, using routing policy p. For a given
c 2 [0,1], the cost-based operational criterion is defined
as

fpðCÞ :¼
VCT � Vp

adoptðCÞ
VCT

� c: ð7Þ

This criterion requires that the long-run average
cost be reduced (relatively) by more than c after
adopting the new test. As we will formally define in
section 3.3, the cost captures misdiagnosis rate, health
costs of unnecessary testing, and patient delays. Next,
we introduce the MDP formulation to compute the
routing policy.

3.3. MDP Formulation for Test Routing Policy
Assume two tests are available for clinicians to use, as
shown in Figure 3. We formulate the test routing deci-
sion problem as an infinite-horizon, long-run average
cost, continuous-time MDP. We introduce the state
space, action space, cost structure, and objective func-
tion below.
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3.3.1. State Space. The system state is captured
with a 2(J + 3)-dimensional vector

x ¼ ðx01; x11; . . .; xJ1; x02; x12; w0
1;w

1
1; . . .;w

J
1;w

0
2;w

1
2Þ:

• x01 and x02 denote the number of patients from
exogenous arrivals that are receiving service at
stations 1 and 2, respectively.

• x
j
1 denotes the number of class j patients with

the suspected disease that are receiving service
in station 1, j = 1,. . .,J.

• x12 denotes the total number of patients with the
suspected disease (i.e., excluding external arri-
vals) that are receiving service in station 2. We
do not need to differentiate patient classes in
station 2 since it is a perfect test. See further
explanation in section 3.3.3 where we introduce
the cost structure.

• w
j
1 denotes the number of class j patients (j = 0

for exogenous) who are currently waiting to
receive service from station i.

• w0
2 and w1

2 denote the number of exogenous
and suspected patients that are waiting to
receive service from station 2. Similarly to the
total count, we do not differentiate by patient
classes.

For notational convenience, we define

x1 ¼ ðx01; x11; . . .; xJ1; w0
1;w

1
1; . . .;w

J
1Þ; ð8Þ

x2 ¼ ðx02; x12; w0
2;w

1
2Þ; ð9Þ

s1 ¼
XJ

j¼0

x
j
1; s2 ¼ x02 þ x12; ð10Þ

n
j
i ¼ x

j
i þ w

j
i; n1 ¼

XJ

j¼0

n
j
1; n2 ¼ n02 þ n12; ð11Þ

Here, xi is the state vector that records patients in ser-

vice or waiting from each class in station i, si counts
all patients who are in service at station i, and ni is
the total patient count in station i, including those
who are in service and are waiting. We can recover

the queue-length count as
PJ

j¼0 w
j
1 ¼ n1 � s1 for sta-

tion 1 and similarly for station 2.

3.3.2. Action for Routing Policy. An action is
triggered upon a new patient arrival or a patient
departure from station 1 (the imperfect test). At an
arrival event, we make an arrival routing decision, that

depends on which class j the arriving patient belongs
to. The arrival action is given by

ajarrðxÞ ¼ i

if the arriving patient is routed to station i; i
¼ 1; 2:

Recall that i = 1 corresponds to the new, imperfect
test (e.g., D-dimer) while i = 2 corresponds to the
existing, perfect test (e.g., CT). No routing decisions
are made for exogenous arrivals.
When a class j patient departs from station 1, we

make a departure routing decision of whether or not to
send the patient for additional testing at station 2,
which depends on the test result at station 1. We

denote the decision as a
j;þ
depðxÞ or aj;�depðxÞ for a patient

receiving a positive or a negative test result at station
1, respectively. For r = +,�,

a
j;r
depðxÞ

¼ 1 if thepatient isdirectlydischarged fromthesystem;

2 if thepatient is routed tostation2:

�

Exogenous patients at station 1 and all patients at
station 2 directly depart from the system (for follow-
up treatment, testing for other diseases, discharged
home, etc.).

3.3.3. Cost Structure. We consider two types of
costs: individual-level diagnostic cost and system-
level congestion cost.
Diagnostic cost. Diagnostic cost is measured by the

accuracy of the diagnostic result. We define

cFNi ; cTNi ; cFPi ; and cTPi as the cost associated with a false
negative, true negative, false positive, and true posi-
tive result, if the patient directly departs from the sys-
tem after getting the test result from station i (i = 1,2).
To calculate the expected diagnostic costs, we specify
the post-test probability as follows.
The test result in station i is positive with probabil-

ity b
j;þ
i given a class j patient has the suspected disease

(i.e., true positive rate), and is negative with probabil-

ity b
j;�
i given the patient does not have the suspected

disease (i.e., true negative rate). Mathematically, sen-
sitivity and specificity are independent of the
patient’s pretest probability, since sensitivity and
specificity are conditional on the patient having or not
having the disease. However, for each of the risk class
we consider, beyond the pretest probability, there
may be unobservable patient characteristics in each
class that could affect the sensitivity and specificity of
the test in that subpopulation. The clinical literature
(Leeflang et al. 2013) indicates that sensitivity and
specificity may or may not depend on disease
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prevalence, likely due to these unobservable factors.
This is why, in the MDP framework, we choose to
present the more general formulation where bþ;�

depends on patient class, which can account for this
spectrum bias. However, it typically requires large
variations in prevalence and severity in the target
population to see measurable impact on sensitivity or
specificity (Linden 2006, Mulherin and Miller 2002).
According to our clinical collaborator, for PE and
many diseases that are diagnosed in the ED, the vari-
ance in the population that is actually tested is low
such that individual patient characteristics would not
significantly impact sensitivity or specificity, hence,
we assume the test sensitivity and specificity are
class-independent in our case study.
If the test at station i is positive, the post-test proba-

bility for a patient having the disease is

~p
j;þ
i ¼ p

j
0b

j;þ
i

p
j
0b

j;þ
i þ ð1� p

j
0Þð1� b

j;�
i Þ

; i ¼ 1; 2; j ¼ 1; . . .; J:

ð12Þ
If the test result is negative,

~p
j;�
i ¼ p

j
0ð1� b

j;þ
i Þ

p
j
0ð1� b

j;þ
i Þ þ ð1� p

j
0Þbj;�i

; i ¼ 1; 2; j ¼ 1; . . .; J:

ð13Þ
Thus, the expected diagnostic cost for a class j

patient getting a test at station i (and directly
departing)

c
j;þ
i ¼ ~p

j;þ
i cTPi þ ð1� ~p

j;þ
i ÞcFPi ; i ¼ 1; 2; ð14Þ

c
j;�
i ¼ ~p

j;�
i cFNi þ ð1� ~p

j;�
i ÞcTNi ; i ¼ 1; 2: ð15Þ

Since we assume the test at station i = 2 is perfect,

we have b
j;þ
2 ¼ b

j;�
2 ¼ 1 and ~p

j;þ
2 ¼ 1 ð~pj;�2 ¼ 0Þ if the

test result is positive (negative). Thus, the expected
diagnostic cost after a test at station 2 can be simpli-

fied as c
j;þ
2 ¼ cTP2 and c

j;�
2 ¼ cTN2 . Without loss of gen-

erality, we also assume that c
j;þ
2 ¼ c

j;�
2 ¼ c2, because

the test at station 2 is perfect and will diagnose the
patient correctly. This assumption simplifies the state
space since it is only necessary to account for the total
number of patients in station 2, rather than differenti-
ating by class. Moreover, for the imperfect test at sta-
tion 1, consistent with the medical literature and

unless specified otherwise, we assume cFN1 � cTN1 and

cFP1 � cTP1 in the remainder of the study. That is, the
cost associate with a false-negative (false-positive) is

higher than that associated with a true-negative (true-
positive).
Congestion cost. To capture the workload impact

of routing patients into each station, we consider the
unit-time holding cost hiðxiÞ. We assume hiðxiÞ is

increasing in each coordinate of xi. In the rest of the

study, unless specified otherwise, we use the linear
holding cost hiðxiÞ ¼ h � ni in terms of the total patient

count ni. We refer to holding cost and congestion cost
interchangeably. We use

hðxÞ ¼ h1ðxÞ þ h2ðxÞ
to denote the total congestion cost from both sta-
tions.
Long-run average cost formulation. We formulate

an infinite-horizon, long-run average cost MDP. For
policy p, we define the average cost Vp as

Vp ¼ lim inf
T!1

1

T
E

� Z T

0

hðXpðtÞÞdt

þ
XJ

j¼1

c
j;þ
1 Y

j;þ
1 ðTÞ þ c

j;�
1 Y

j;�
1 ðTÞ

� �
þ c2Y2ðTÞ

�
;

where XpðtÞ denotes the (stochastic) state under pol-
icy p at time t. Within the expectation, the first inte-
gral captures the cumulative holding costs at both
stations, while the other terms capture the cumula-

tive diagnostic costs: Y
j;þ
1 ðtÞ and Y

j;�
1 ðtÞ are counting

processes to track the total number of class j patients
exiting the system after getting a positive or nega-
tive result, respectively, from station 1 up to time t,
under policy p; Y2ðtÞ is the counting process to track
the total number patients exiting the system after
finishing the test at station 2 up to time t, under pol-
icy p.
Our objective is to minimize the long-run average

cost, defined as

x� ¼ inf
p
Vp:

3.3.4. Routing Policy for Computing Adoption
Regions. In this section, we connect each adoption
criterion from section 3.2 with the cost structure in the
MDP, from which we can compute the corresponding
adoption regions (whether to adopt a test or not). In
other words, we show that the medical and conges-
tion criteria can be unified under the cost-based objec-
tive of our MDP.
Adoption under the Medical Criterion: The fol-

lowing proposition provides a one-to-one mapping
between the routing in the MDP and the medical cri-
terion.
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PROPOSITION 1. Let h = 0 and assume patients with
positive results from station 1 will be sent to station 2
for follow-up check. Assume that

c2 � cTN1
cFN1 � cTN1

¼ a: ð16Þ

Then the new test will be adopted (i.e., a patient would
be routed to the new test in the MDP) if and only if the
medical criterion, fpMðCÞ � 1 � a, is satisfied.

The proof of Proposition 1 is in Appendix B.1. We
call the set of test characteristics
CM ¼ fC : fpMðCÞ � 1 � ag the medical adoption
region.
Adoption under the Congestion Criterion: Setting

all cFN1 ; cTN1 ; cFP1 ; cTP1 ; c2 to be 0 and h > 0, then solving
policy p from the MDP for a test with characteristics
C, the congestion criterion is met with fpWðCÞ � b, if
and only if fpðCÞ � b. This follows from Little’s Law,
as the relative reduction in throughput time is equal
to the relative reduction in queue length, which is
captured by the holding cost. The congestion adop-
tion region, which is the largest set of test characteris-
tics that would be considered acceptable solely from a
workload and patient delay perspective, is the set
CW ¼ fC : fpWðCÞ � bg.
Adoption under the Operational Criterion: The

operational criterion models a combination of both
the congestion effects and health outcomes. We call
the set of test characteristics CO ¼ fC : fpðCÞ � cg
the operational adoption region, where policy p is the
optimal routing policy solved from the MDP with
non-zero holding and diagnostic costs.

REMARK 1. The medical effects considered under
the operational criterion are different from those
under the medical criterion. First, the operational
criterion considers the misdiagnosis rate of the
entire testing system that has the CT station for fol-
low-ups. The medical criterion only considers the
misdiagnosis rate of the individual test, which can
overestimate the true misdiagnosis rate. That is,
when a new test is adopted in a clinical environ-
ment, it is not implemented in a vacuum (as the
medical criterion often assumes), but in a system
context. The system-level misdiagnosis rate provides
a more accurate representation of the misdiagnosis
rate of a new test than the medical criterion. Second,
the health outcomes considered under the opera-
tional criterion are broader than those considered
under the myopic medical criterion. The operational
criterion considers the impact of using the new test
on reducing the unnecessary usage of the potentially
harmful and heavily utilized CT. Note that the

health outcome measures captured in the opera-
tional criterion depend on the usage of the new test
in the system setting and are operational in natural.
Thus, we subsume health outcomes and throughput
within the single, all-encompassing term “opera-
tional criterion,” which mirrors the defect detecting
problems studied in the manufacturing systems.

4. Bellman Equation and Structural
Properties

In this section, we specify the Bellman equation for
the MDP introduced in section 3.3. We then derive
structural properties that provide insights into the
dominance among patient classes.

4.1. Bellman Equation
We first need to uniformize the continuous time

MDP. Recall that � ¼ P
j �

j is the total arrival rate of

the disease suspects (�j is the arrival from class j dis-
ease suspects), �ex

i is the exogenous arrival rate to sta-
tion i, and �li is the upper bound for the service rate
function liðsiÞ for i = 1,2. Without loss of generality,
we assume �l1 þ �l2 þ � þ �ex

1 þ �ex
2 ¼ 1, such that

the uniformization rate is 1. Let v(x) denote the rela-
tive value function for state x. The optimal Bellman
equation then can be written using event-based
dynamic programming (Koole 2007):

x� þ vðxÞ ¼ h1ðx1Þ þ h2ðx2Þ þ �ex
1 TA0

1
vðxÞ

þ �ex
2 TA0

2
vðxÞ þ l2ðs2ÞTD2

vðxÞ

þ
XJ

j¼1

�jTARjvðxÞ þ l1ðs1ÞTD1
vðxÞ

þ ð�l1 � l1ðs1ÞÞvðxÞ þ ð�l2 � l2ðs2ÞÞvðxÞ;
ð17Þ

where the TARj are the arrival routing operators for
class j patients with the suspected disease used to
determine the arrival routing decision a

j
arr given pre-

viously, the TA0
i
are the arrival operators for the exo-

genous patients to station i, and the TDi
are the

departure operators from station i used to determine
the departure routing decision a

j;r
dep given previously.

We specify each operator below.
We focus on scenarios when 0\ si � ki (ki is the

capacity of station i), delegating the complete specifi-
cation with the boundary conditions (i.e., si ¼ 0 or
the queue is not empty) to the appendix. For a func-

tion f : Z
Jþ3
þ ! R,

½Arrival routing operators�
TARj fðxÞ ¼ minffðxþ e

j
1Þ; fðxþ e12Þg;

ð18Þ
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½Departure routing operators�

TD1
fðxÞ ¼

XJ

j¼1

x
j
1=s1

�
l
j;þ
1 T

DR
j;þ
1

fðxÞ þ l
j;�
1 T

DR
j;�
1

fðxÞ
�

þ x01=s1TD0
1
fðxÞ; ð19Þ

TD2
fðxÞ ¼ x02=s2TD0

2
fðxÞ þ x12=s2TD1

2
fðxÞ; ð20Þ

Here, e
j
i ¼ ð0; . . .; 1; . . .0Þ is the unit vector with a 1

in the x
j
i coordinate and 0 elsewhere, indicating the

addition (or removal if �1) of a single patient from
class j at station i. The departure operator for station
1, TD1 , depends on the test results. If the result is
positive,

T
DR

j;þ
1

fðxÞ ¼ minfcj;þ1 þ fðx� e
j
1Þ; fðx� e

j
1 þ e12Þg;

if x
j
1 [ 0;

ð21Þ

and the operator upon a negative results, T
DR

j;�
1

, can
be defined similarly; l

j;þ
i and l

j;�
i in Equation (19)

denote the likelihood of the test result from station i
being positive or negative, respectively, so

l
j;þ
i ¼ p

j
0b

j;þ
i þ ð1� p

j
0Þð1� b

j;�
i Þ; i ¼ 1; 2;

and l
j;�
i ¼ 1 � l

j;þ
i . TD0

1
fðxÞ ¼ fððx � e01ÞþÞ represents

the departure of an exogenous patient from station
1. The departure operator for a disease suspect from
station 2 is given by

TD1
2
fðxÞ ¼ c21x1

2
[ 0 þ fðmaxðx� e12; 0ÞÞ; ð22Þ

and TD0
2
represents the departure of an exogenous

patient from station 2 and is defined similarly as
TD0

1
. It is straightforward to write the arrival opera-

tors for exogenous patients, TA0
i
. The last two terms

in Equation (17) are dummy transitions.
The following theorem verifies that there exists a

pair ðx�; vÞ satisfying (17).

THEOREM 1. Assume a stable queue under the existing
test � þ �ex

1 þ �ex
2 \ �l2. For the average-cost optimality

equation defined by Equation (17):

(i). There exists an average-cost optimal stationary
policy.

(ii). The optimal average cost can be computed as
x� ¼ infp V

p ¼ limd!1� limn!1ð1� dÞ Vn;dðxÞ,
where Vn;dðxÞ is the n-period discounted value
function with discount factor d.

(iii). Let pn;d denote an optimal policy for the n-period
discounted cost problem. Then any limit point pd
of the sequence fpd;ngn� 1 as n ? ∞ is optimal

for the infinite-horizon discounted cost problem.

Moreover, any limit point of the sequence
fpdgd2ð0;1Þ (as d ! 1�) is average-cost optimal.

The proof of Theorem 1 is in Appendix B.

4.2. Structural properties
In this section, we derive structural properties on the
dominance among classes under the optimal actions,
which provide useful managerial insights for under-
standing which patients should be prioritized for
routing to the new test. Moreover, these properties
facilitate the search over the action space when solv-
ing the MDP. For example, under the conditions pre-
sent in Theorem 2 below, if a lower risk patient is
directly routed to station 2 upon arrival, given state x,
it will be optimal to route a higher risk patient to sta-
tion 2 seeing the same state without the need to
resolve the optimal action from (17).

THEOREM 2. Assume test sensitivity b
j;þ
1 and specificity

b
j;�
1 are independent of j, and the diagnostic costs satisfy

(i) c
j;þ
1 � c

j;�
1 , for j = 1,. . .,J,

(ii) cFN1 ð1� bþ1 Þ � cTN1 b�1 ,

(iii) cFN1 ð1� bþ1 Þ þ cTP1 bþ1 � cTN1 b�1 þ cFP1 ð1 � b�1 Þ,
(iv) bþ1 � 1 � b�1 () b�1 � 1 � bþ1 .

Then,

1. a
j1
arrðxÞ � a

j2
arrðxÞ, for 1 � j1 \ j2 � J.

2. a
j;þ
depðxÞ � a

j;�
depðxÞ, for 1 ≤ j ≤ J.

Condition (i) says the treatment cost after diagnos-
ing a patient as having the disease is higher than the
cost after ruling out the disease (no treatment). Condi-
tion (iv) requires that the probability of a true nega-
tive (b�1 ) is greater than the probability of a false
negative (1 � bþ1 ), while condition (ii) requires that
the expected (pre-test) cost of a false negative is larger
than the expected cost of a true negative to further
penalize false negatives. Moreover, condition (iii)
requires that the combined expected cost of false neg-
ative and true positive exceeds the combined
expected cost of true negative and false positive. In
other words, it requires that the penalty on false nega-
tives (relative to true negatives) is larger than the pen-
alty on false positives (relative to true positives).
Conditions (ii)–(iv) essentially require that the new

test has a high sensitivity and that the test needs to be
accurate enough for ruling out patients (the cost of
false negative is high). These conditions hold for the
D-dimer test for PE in our study and also tend to be
true in general practice due to the fact that the medical
community tends to prioritize sensitivity over speci-
ficity (see, e.g., Davis et al. (2005)). Result (1) of
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Theorem 2 states that, for a new test satisfying these
conditions, it is preferable to use the test on low-risk
patients to rule out the disease. Specifically, if a lower
risk patient would not use the new test upon arrival, a
higher risk patient should also not use the new test.
Result (2) provides a realism check on the model, stat-
ing that a patient is more likely to be discharged from
the system after a negative test result at station 1 than
after a positive test result. Analogously, if a test is
more accurate in confirming a disease, it can be shown
that the test should be prioritized to be used on high-
risk patients (see Proposition 2 in the appendix). How-
ever, this case relates to a different setting than that of
our case study and is less likely to occur in medical
practice according to our clinical collaborator.

5. Decomposition Algorithm

The MDP introduced in section 3.3 suffers from the
curse of dimensionality. Because the model tracks the
patient count for each risk class, the state space grows
exponentially when applying a finer risk stratifica-
tion. For example, when J = 3, with a state truncation
of 10 for each x

j
i and w

j
i, the size of the state space is

1012. Solving v(x) from the Bellman equation presented
in section 4.1 with conventional value or policy itera-
tions becomes computationally challenging, if not
completely infeasible.
To overcome the curse of dimensionality,wedevelop

a decomposition algorithm that only requires solving
an MDP with a two-dimensional state space. The main
idea of this algorithm is to perform an iterative, multi-
step policy improvement based on a static routing policy
that routes class k patients to station 1with a fixed prob-
ability pkr and to station 2 with probability 1 � pkr . Lev-
eraging this simpler policy, we can formulate J
subproblems, one for each class j. In each subproblem,
we solve for the optimal arrival and routing actions for
the target class j, using an approximation for the cost-
to-go. This approximation is obtained from an iterative
algorithm where, in each iteration, we update both the
optimal actions for the target class j and the cost-to-go
approximation. We initialize the iterative algorithm
with the value function solved using the static routing
policy for all patients. Then, in each subsequent itera-
tion, we obtain the optimal arrival and departure rout-
ing actions for class j using the current approximation
of the cost-to-go. We update the cost-to-go using the
optimal actions solved in that iteration for class jwhile
employing the static policy for all other classes.

5.1. Algorithm Description
We first specify properties and Bellman equations
under a fixed, static routing policy. Then, we intro-
duce the one-step and multi-step policy improvement
used in the decomposition algorithm.

Static routing policy. Consider a static routing pol-
icy that sends each class k patient to station 1 with
probability pkr and to station 2 with probability 1 � pkr .
We further assume that each patient, upon finishing
service at the station she was initially routed to,
directly leaves the system. We first show the follow-
ing properties under this static routing policy.

LEMMA 1. Under the static routing policy, the two sta-
tions run as two independent queueing systems, where
the arrival process for station i is Poisson with rate
�ex
i þ PJ

‘¼1 �
‘p‘r and the service completion process is

Poisson with rate lið�Þ during the busy period. Further-
more, it is sufficient to track the total number of patients
in each system, ni, to recover the number of patients from
each class k in service or waiting in the steady state.

It is straightforward to show the independence
between the two stations using the Poisson thin-
ning property and the direct departure assumption.
To recover the patient count of each class that are
in service or waiting, we note that, under the class-
independent service rate and the random-service
processing discipline, the following are equivalent
in the probabilistic sense: a patient’s class is
revealed (1) upon arrival or (2) upon admission to
service or (3) upon service completion. As a result,
given the total patient count n1 in station 1, the
number of patients from each class k that are in

station 1, ðn01; n11; . . .; nJ1Þ; follows a multinomial dis-
tribution with parameters n1 and probabilities

ðq01; q11; . . .; qJ1Þ, where

q01 ¼
�ex
1

�ex
1 þPJ

‘¼1 �
‘p‘r

; ð23Þ

qk1 ¼
�kpkr

�ex
1 þPJ

‘¼1 �
‘p‘r

; k ¼ 1; . . .; J: ð24Þ

Similarly, the number of patients from each class k

that are in service at station 1, ðx01; x11; . . .; xJ1Þ; also fol-
lows a multinomial distribution with parameters s1
and probabilities ðq01; q11; . . .; qJ1Þ. The same results
apply to the queue length count. Here, s1 can be cal-
culated from n1 depending on which queueing set-
ting we use. For example, in the M/M/k setting,
s1 ¼ minðn1; kÞ, and in the processor-sharing queue
setting, s1 ¼ n1. We use the function s1 ¼ s1ðn1Þ to
denote the general dependence of s1 on n1, and it is
sufficient to just track n1.
Using the same argument, we can recover nk2 and xk2

for station 2 using binomial distributions with
parameters n2 and s2 ¼ s2ðn2Þ, respectively, and
probabilities
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q02 ¼
�ex
2

�ex
2 þPJ

‘¼1 �
‘ð1� p‘rÞ

; ð25Þ

q12 ¼
PJ

‘¼1 �
‘ð1� p‘rÞ

�ex
2 þPJ

‘¼1 �
‘ð1� p‘rÞ

¼ 1� q02: ð26Þ

Value functions under the static routing policy.
Let q1 ¼ ðq01; . . .; qJ1Þ and q2 ¼ ðq02; q12Þ. Given the prop-
erties shown in Lemma 1, we consider the two-
dimensional state space ðn1; n2Þ. For any given fixed
routing probabilities pkr ðk ¼ 1; . . .; JÞ, we can solve
the value functions Vrðn1; n2Þ from the following Pois-
son equation:

xr þVrðn1;n2Þ ¼E½h1ðn1;q1Þ� þ E½h2ðn2;q2Þ�
þ �ex

1 TA0
1
Vrðn1;n2Þ þ �ex

2 TA0
2
Vrðn1;n2Þ

þ
XJ

k¼1

�kTARr;kVrðn1;n2Þ

þ l1ðs1ÞTDr
1
Vrðn1;n2Þ

þ l2ðs2ÞTDr
2
Vrðn1;n2Þ

þ ð�l1 � l1ðs1ÞÞVrðn1;n2Þ
þ ð�l2 � l2ðs2ÞÞVrðn1;n2Þ:

ð27Þ
Here, we use the superscript “r” over the value
function and the arrival/departure operators to
emphasize that they depend on the given static rout-
ing policy. The holding cost E½hiðni; qiÞ� is the
expected version of the original hiðxiÞ with respect
to the multinomial distribution. The arrival routing
operator TARr;k follows

TARr;k ¼ pkrTA0
1
þ ð1� pkrÞTA0

2
; ð28Þ

where TA0
1
fðn1;n2Þ ¼ fðn1 þ 1;n2Þ and TA0

2
fðn1;n2Þ ¼

fðn1;n2 þ 1Þ. Combining terms, we have

XJ

k¼1

�kTARr;kVrðn1;n2Þ

¼
XJ

k¼1

�k pkrTA0
1
Vrðn1;n2Þþð1�pkrÞTA0

2
Vrðn1;n2Þ

� �
:

Under the assumed service setting, we can further
write the departure operator TDr

i
as

TDr
1
fðn1;n2Þ¼

XJ

k¼1

qk1

�
lk;þ1 TDRr;k;þ

1
fðn1;n2Þþ lk;�1 TDRr;k;�

1
fðn1;n2Þ

�

þq01TD0
1
fðn1;n2Þ; ifn1[0;

TDr
2
fðn1;n2Þ¼q02TD0

2
fðn1;n2Þþq12TD1

2
fðn1;n2Þ; ifn2[0;

Here, qki is the proportion of class k patients in sta-
tion i from the multinomial distribution where
qki liðsiÞ is the rate with which a departure of class k
occurs. TD0

1
, TD0

2
and TD1

2
are the two-dimensional

analogues of the previously presented departure
operators, and TDRr;k;þ

1
, TDRr;k;�

1
follow from the

assumption of direct departure, for example,

TDRr;k;þ
1

fðn1; n2Þ ¼ c
j;þ
1 þ fðn1 � 1; n2Þ:

We treat these probabilities, pkr ’s, as tunable
parameters. In the implementation, we start from
the pkr ’s obtained from the policy that mimics the
current practice (i.e., routing low-risk patients to
station 1 and other patients to station 2) and then
fine tune these pkr ’s with line search to minimize
the average cost from the decomposition algo-
rithm.
One-step policy improvement. For class j, we

perform a one-step policy improvement based on
Vrðn1;n2Þ by replacing the static operators with the
original operators. That is, we replace TARr;j , T

DR
r;j;þ
1

,
and T

DR
r;j;�
1

in Equation (27) with the original oper-
ators TARj , T

DR
j;þ
1

, and T
DR

j;�
1

for class j and apply
them to Vrðn1; n2Þ. Then, we obtain the class-
dependent arrival and departure routing actions
for class j by finding the actions that are the mini-
mizers of:

TARjVrðn1; n2Þ ¼ minfVrðn1 þ 1; n2Þ;Vrðn1; n2 þ 1Þg;
T
DR

j;þ
1

Vrðn1; n2Þ ¼ minfcj;þ1 þ Vrðn1 � 1; n2Þ;
Vrðn1 � 1; n2 þ 1Þg:

We do the same for T
DR

j;�
1

. These class-specific
operators allow state-dependent routing for each
class j patient, which can be seen from the minimi-
zation operation that does not appear in the static
routing policy formulation.
Multi-step policy improvement. For the multi-step

policy improvement, we use Vrðn1;n2Þ as an initial
solution and then iteratively update the value func-
tion using the following equation. In iteration t + 1,
we get Vj;ðtþ1Þðn1; n2Þ for class j by

xþVj;ðtþ1Þðn1;n2Þ¼ E½h1ðn1;q1Þ�þE½h2ðn2;q2Þ�
þ�ex

1 TA0
1
Vj;ðtÞðn1;n2Þþ�ex

2 TA0
2
Vj;ðtÞðn1;n2Þ

þ�jTARjVj;ðtÞðn1;n2Þþ
X
k 6¼j

�kTARr;kVj;ðtÞðn1;n2Þ

þl1ðs1ÞT~D1
Vj;ðtÞðn1;n2Þþl2ðs2ÞTDr

2
Vj;ðtÞðn1;n2Þ

þð�l1�l1ðs1ÞÞVj;ðtÞðn1;n2Þþð�l2�l2ðs2ÞÞVj;ðtÞðn1;n2Þ;
ð29Þ
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where Vj;ð0Þ ¼ Vrðn1; n2Þ, and

T~D1
fðn1; n2Þ ¼

XJ

k¼1

qk1

�
lk;þ1 TDRk;þ

1
fðn1; n2Þ

þ lk;�1 TDRk;�
1
fðn1; n2Þ

�

þ q01TD0
1
fðn1; n2Þ: ð30Þ

Equation (29) is obtained from (27) by replacing the
arrival operator for class j with TARj , and the depar-
ture operators for each class with TDRk;þ

1
, and TDRk;�

1

in T~D1
. We solve (29) for s iterations to get

Vj;ðsÞðn1; n2Þ. Applying the class-j operators to

Vj;ðsÞðn1; n2Þ in the last iteration s, we obtain the arri-
val and routing actions for class j as we did in the
one-step improvement. This multi-step policy
improvement algorithm is in the same spirit as the
multi-step greedy approach presented in Efroni
et al. (2018a, b). Recent papers report empirical suc-
cess of the multi-step policy improvement over one
step in the performance of the original MDP (Efroni
et al. 2018a); our numerical analyses support these
findings. We leave it to future research to rigorously
justify the performance improvement of this multi-
step approach.

REMARK 2. One drawback of the algorithm pre-
sented here is that, in the departure operator T~D1

,

the proportions q1 and q2 remain the same no matter

which class j we are looking at. This may lead to a
larger optimality gap when patients of a certain
class k constitute the majority of the patient popula-
tion. That is, when qk is close to 1, the class j depar-
ture decisions are solved mostly based on the
characteristics of class k patients, rather than those
of class j. To remedy this, we propose a refinement,
which, as mentioned, explicitly tracks the number of
patients from the target class in station 1; details are
provided in Appendix A.

REMARK 3. Using a technique based on event-based
dynamic programming, it is possible to show that a
threshold policy is optimal when there is only a

single class of patients. This threshold result is rele-
vant to our decomposition algorithm that considers
only one target class j in each of the J subproblems.
Specifically, if both stations use the M/M/1 queue-
ing structure, it is optimal to route the patient to
station 1 if the number of patients in station 2
exceeds some threshold that depends on the num-
ber of patients in station 1, n2ðn1Þ. However, we are
not able to extend this result to M/M/c queues, as
Koole (2007) pointed out that proving the threshold
policy for multiple-server queues remains an open
problem.

5.2. Numerical Validation of the Decomposition
Algorithm
To validate the performance of our decomposition
algorithm, we numerically compare the long-run
average cost of our algorithm with the “true” optimal
policy obtained from value iteration. We refer to the
policy obtained from the decomposition algorithm
introduced in section 5 as the basic approximate policy,
and to that obtained from the refined algorithm
detailed in Appendix A as the refined approximate pol-
icy. Due to the curse of dimensionality, value iteration
can only solve a three-class patient problem (i.e.,
J = 3) without arrivals of exogenous patients to sta-
tion 1. Thus, our comparison below focuses on this
setting.
Table 1 reports the average cost under different sys-

tem load conditions. The parameters are derived from
data at our partner ED, with details on parameter esti-
mation given in section 6.1. The optimality gap for
each approximate policy is defined as (approximate
policy cost - optimal cost)/ optimal cost. Optimality gaps
are <1.5% under all load conditions.
We also compare the policies from our algorithms

with several other na€ıve policies, including a point-
threshold policy and a static policy that sends all sus-
pected patients to the new test first; see Appendix C.
In most parameter settings, the benefit gained from
the refined heuristic policy is more than 5% compared
with the threshold policy, and 10% compared with
several other static policies. Furthermore, in Table 5
in Appendix C, we extend our study beyond our

Table 1 Long-Run Average Daily Costs of Different Policies

Lightly loaded Intermediately loaded Heavily loaded

Optimal 6.90�0.01 11.49�0.02 15.74�0.03
Basic approx policy 6.98�0.01 11.65�0.02 15.86�0.04
Optimality gap 1.29% 1.33% 0.76%
Refined approx policy 6.92�0.01 11.50�0.02 15.75�0.02
Optimality gap 0.31% 0.05% 0.09%

Notes: We set J ¼ 3; p10 ¼ 0:05; p20 ¼ 0:35; p30 ¼ 0:65. For j ¼ 1; 2; 3; bj ;þ1 ¼ 0:9819; bj ;�1 ¼ 0:4249; �j ¼ 0:2. �ex
1 ¼ 0; �ex

2 ¼ 0:6; l1ðxÞ ¼
0:9x 0:5. cTP1 ¼ cTN1 ¼ c2 ¼ 0; cFP1 ¼ 100; cFN1 ¼ 800; h1ðxÞ ¼ 6s1; h2ðxÞ ¼ 6s2. Routing probabilities for the heuristic policies are uniformly set as
(0.6,0.6,0.6). Left panel: l2ðxÞ ¼ 2:2; middle panel: l2ðxÞ ¼ 1:7; right panel: l2ðxÞ ¼ 1:45. The number after the � sign is the half-width of the
corresponding 95% confidence interval

Shi, Helm, Heese, and Mitchell: Adoption and Integration of Diagnostic Tests
344 Production and Operations Management 30(2), pp. 330–354, © 2020 Production and Operations Management Society



partner ED by comparing the optimality gaps under a
variety of system conditions. We observe that the
optimality gaps of the basic heuristic policy are <3%
under most settings, and the maximum optimality
gap is 5.2%. The optimality gaps of the refined heuris-
tic policy are <1.5% under all settings.

6. PE Testing in Emergency
Departments

In this section, we apply our framework to analyze
adoption and integration of a new PE test into the ED
at our partner hospital. In our partner ED, all patients
with pre-test scores (from a simple scoring tool) above
a predefined threshold are sent for a CT to confirm
the diagnosis. The coarseness of this initial screening
results in too many patients being sent to CT, which
has both operational and medical consequences,
including overuse of highly utilized CT machines and
potential hazards to the patients due to radiation
exposure or kidney damage from the diagnostic dye.
To avoid overuse of the CT, our collaborator has pro-
posed using a diagnostic biomarker test—the D-dimer
test—as a rule out tool for PE, given its high true nega-
tive rate. However, this test also has a high false posi-
tive rate. If the D-dimer is not discerning enough,
excessive double-testing can increase the overall time
a patient spends in the ED, which increases the ED
physicians’ workload. Our collaborator’s concern is
that if new tests are seen by physicians as creating
extra work, they will not be adopted into clinical
practice.
In this case study, we address our collaborator’s

primary concerns and, more broadly, study how test
characteristics and the manner of integration affect
the adoption and performance of a new test. In section
6.1, we introduce the dataset and parameterization
for our analytical framework. In section 6.2, we study
adoption decisions under the medical and operational
criteria, and we demonstrate how the manner of test
integration affects the adoption regions.

6.1. Data Description and Model Parameterization
Dataset. The data were obtained from a large teach-

ing hospital in the state of Indiana. The data consist of
a test order log and ED patient movement data, where
the data entries were obtained from eight randomly
selected weeks between July 2013 and July 2015
according to the admission time of the patients, where
the random selection is to conform with IRB require-
ments. The two datasets were merged using de-iden-
tified patient IDs. Each record in the merged dataset
contains a patient’s entire care history in the hospital,
from arrival to the ED until discharge from the hospi-
tal. Patient arrival data contains arrival date and time,

visit reason, and main complaints, etc. The testing
data include test name, test order date and time, and
test completion date and time. The discharge data
include discharge date and time, discharge diagnosis,
and discharge condition.
In total, 10,254 patients visited the ED during the

selected weeks, accounting for 103,514 ED testing
entries. Tests that were performed during the inpa-
tient stay are excluded from our ED study. Out of the
10,254 patients, 6,698 patients (65.3%) were dis-
charged after the ED stay, 2,535 patients (24.7%) were
admitted as inpatients, 998 patients (9.7%) were
admitted under hospital observation status, and 23
patients (0.2%) were bedded outpatients.
Arrival rates. Four main complaints of patients

with PE are chest pain, shortness of breath, dyspnea,
and difficulty breathing. First, we included patients
sent to the CT (chest test) that exhibited these four
symptoms as PE suspects, which is recommended by
our clinical collaborator. Additionally, we considered
all patients sent to the D-dimer as PE suspects, as this
test is used exclusively for diagnosing PE. The total
arrival rate of PE patients to our partner ED is deter-
mined to be k = 0.65 patients per hour. For arrivals to
CT, non-PE suspects accounted for �ex

2 ¼ 1:06
patients per hour. We assume time-stationary arrivals
in the experiments presented in section 6, and we con-
sider time-varying arrivals in section 7.2 as sensitivity
analysis.
Service rates and departure routing. We illustrate

the empirical distribution of CT occupancy levels in
Figure 4 using a solid line, where the occupancy level
at a given time includes all patients who are waiting
for or are receiving the CT test. This empirical occu-
pancy distribution is calculated from data on each
patient’s CT request time and test finish time. In our
data, we only have the time when a test was
requested and the time the test was finished, but not
when the test was started. In other words, we cannot
estimate the queue length at the CT test. Hence, we
choose to estimate a service rate that best matches the
empirical occupancy distribution from the data.
Among different distributional fittings, we find that
using a processor-sharing queue with a service rate
function l2ðxÞ ¼ 0:9x0:5 best replicates the empirical
occupancy distribution curve (minimizing the mean
squared errors); see the dashed line in Figure 4. For
comparison, we also plot the occupancy distribution
using the conventional M/M/1 queue with
l2ðxÞ ¼ 1:91, which clearly deviates from the empiri-
cal distribution. We believe that the processor-sharing
queue provides a better fit because the CT testing
equipment is used in complex ways in the ED. For
example, doctors sometimes order priority STAT tests
(non-FIFO order), and the CTs in our partner ED have
a time-varying number of servers as some of the
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machines are not staffed at certain times or are occa-
sionally dedicated for inpatients. These complexities
could make traditional M/M/1 and M/M/k queue-
ing systems a poor fit for the empirical occupancy dis-
tribution, whereas the processor-sharing queue is
more flexible to accommodate these complexities
commonly seen in the ED testing environment.
We estimate the service rate function for the new

test (D-dimer) in a similar way. We find that
l1ðxÞ ¼ 0:96x is the best fit for the empirical occu-
pancy distribution. Thus, in the rest of the numerical
study, we adopt a processor-sharing queue for both
tests. We perform sensitivity analysis on alternative
queueing models in section 7.2. In addition, we follow
the current practice and fix the departure routing, that
is, patients getting a positive result at station 1 must
be sent for follow-up at station 2.
Patient characteristics. Physicians usually stratify

PE-suspected patients into low, intermediate and
high-risk groups based on their pretest scores (Kline
et al. 2014, Kohn et al. 2017). We infer the pretest
probability and the proportion of each class from the
data in Kline et al. (2014), who conducted clinical tri-
als at three EDs and one community hospital.
D-dimer characteristics. Most hospitals adopt a

uniform D-dimer cutoff of 0.5lg/mL for all PE sus-
pected patients (Kohn et al. 2017, Linkins et al. 2013).
This D-dimer cutoff is a threshold to distinguish
between negative and positive test results. Kohn et al.
(2017) study the effect of different D-dimer cutoffs on
diagnosing PE. Using their data, we derived the sensi-
tivity and specificity of the D-dimer test at a 0.5lg/mL
cut-off, which are reported in Table 2.
Cost parameters. There are two basic types of diag-

nostic costs: (1) the cost of an inaccurate diagnosis
(false negative or false positive) and (2) the cost of
performing a test. For the first type, we normalize cTP1
and cTN1 to be 0. For the second type, we normalize the
cost of performing the PE test to 0, since blood tests
are cheap relative to a CT. Following Kohn et al.
(2017), who suggest an upper bound of 3% post-test
probability for PE diagnostic tests, we set cFP1 , cFN1 , and
c2 to satisfy (16) with a = 3%. For the congestion cost,

we adopt a linear form with hiðxÞ ¼ hsi; i ¼ 1; 2. In
the baseline experiment, we set h = 30. Later we will
show that these cost parameters, c’s and h, illustrate
the weight that hospital managers put on congestion
vs. individual patient outcomes and can be used as
tuning parameters for managers to achieve desired
performance metrics.

6.2. Adoption Decision in our Partner ED
In this section, we apply our framework for evaluat-
ing test adoption and integration for diagnosing PE in
the parameter regime of our partner ED. We demon-
strate the interplay between medical and congestion
effects for test adoption in section 6.2.1, and how the
manner of test integration plays an important role in
the adoption regions in section 6.2.2. A key insight
from this section is that considering the clinical envi-
ronment, rather than the test in isolation, leads to the
conclusion that the impact of specificity is likely to
have been overlooked by the medical community,
because the current evaluation of diagnostic tests
ignores how the test will be used in practice. From the
operational standpoint, specificity is a key driver in
how a test is implemented and how effectively it will
function in combination with the existing test. Mea-
suring the test in isolation downplays the importance
of specificity since sensitivity is the primary driver of
the misdiagnosis rate Equation (3) under the medical
criterion. Our operational framework reveals the
important role that specificity plays in both the opera-
tional and medical value of a test, whereas sensitivity
—the primary consideration for most medical
research—primarily impacts the medical criterion
with little impact on doctor workloads and patient
delays.
We summarize the major findings from the rest of

this section. First, a test with high sensitivity and low
specificity may meet medical standards but could be
rejected in practice due to increased workloads. Con-
versely, a test with lower sensitivity and high speci-
ficity may be rejected even when the benefits of
reduced workload and CT avoidance may outweigh
the slightly higher false negatives. Second, we find

Table 2 Base Parameters for PE Setting

Queueing parameters
l1ðxÞ l2ðxÞ k kex1 kex2
0.96x 0.96x0.5 0.65 0 1.06

Test parameters and patient
characteristics

j pj0 pj bj ;þ1 bj ;�1
1 5% 80% 98.19% 42.49%
2 15% 16% 98.19% 42.49%
3 20% 4% 98.19% 42.49%

cFP1 cFN1 cTP1 cTN1 c2
Diagnostic costs 100 800 0 0 24
Unit holding costs h1ðxÞ ¼ hs1; h2ðxÞ ¼ hs2; h = 30.

Notes: The service rate functions, arrival rates and unit holding costs are on the hourly scale.
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the current medical criterion to be misleading because
(1) the new test will not be used on all patients and (2)
false positives can be ruled out by subsequently send-
ing the patient to the existing test. This causes the
myopic medical criterion to overestimate the true mis-
diagnosis rate in the system context since some
patients will be sent directly to the existing test and
receive a correct diagnosis, which reduces the misdi-
agnosis rate relative to just measuring the misdiagno-
sis rate at the new test alone. In addition, the medical
criterion alone is too restrictive (unnecessary rejec-
tion) at low specificities because false positives cause
a larger misdiagnosis rate when considering the indi-
vidual test, whereas in practice, false positives even-
tually become true negatives when the patient is sent
to the CT (avoiding the misdiagnosis). Third, we find
that sensitivity has little impact on congestion, which
is not considered in the medical criterion, whereas
specificity has a strong impact. Moreover, when using
a dynamic routing policy, specificity has a stronger
impact on the medical value of the test because it
drives greater usage of the test due to medical benefits
of CT avoidance as well as operational benefits in
reduced patient delays. Finally, we find that the
dynamic policy is able to adapt usage to test charac-
teristics while the static policy does not. This adapt-
ability is particularly important for reducing CT
usage and doctor workloads. However, improving
test speed mitigates the inefficiencies of a simpler
routing policy, making tests more easily and broadly
adoptable.

6.2.1. Medical vs. Operational Considerations.
Figure 5 presents an example of a primary output of
this research that partitions the test characteristic
space into adoption vs. non-adoption regions under
different criteria. We call the line that partitions the
space the adoption boundary for the corresponding cri-
terion. The dashed and dotted lines in Figure 5 illus-
trate the levels of sensitivity and specificity that a
new test for PE must achieve to meet the medical

criterion (for low-risk patients only, using a = 3%)
and the operational criterion (c = 7.5%), respectively;
the choices of a and c are based on the medical litera-
ture Kohn et al. (2017) and input from our clinical
collaborator. We also plot the congestion adoption
boundary as a solid line using b = c = 7.5%. The
three boundaries in Figure 5 reflect how the adop-
tion boundary shifts from medical to congestion con-
siderations. To generate these adoption boundaries
we use the optimal routing policy calculated from
the MDP with proper cost parameterizations as
introduced in section 3.3.3. Next, we discuss the
regions formed by the partitions in Figure 5.
Overvalue vs. undervalue. Two interesting regions

in the partition are the upper left and lower right
quadrants. In the upper left quadrant colored light
gray (medical only region), the sensitivity is high and
specificity is low, in which case considering only the
medical criterion overvalues the new test; researchers
may consider the test sufficiently accurate to suggest
its use in EDs only to find that it would be rejected in
practice due to increased patient delays and doctor
workloads. The high sensitivity means few false nega-
tives and hence a low misdiagnosis rate from the new
test, which is important from the medical standpoint.
However, the low specificity generates many false
positives and hence a significant amount of double
testing, which increases physician workload and
delays patient discharge.
In the lower right quadrant shaded dark gray (oper-

ational only region), the sensitivity is lower and speci-
ficity is high, which leads the medical criterion to
undervalue the new test; researchers may not con-
sider the test worthy of pursuing due to concerns over
medical accuracy, although adopting it in practice
may alleviate congestion at the CT and avoid poten-
tial harm from unnecessary CTs. Undervaluing a test
may be particularly relevant in cases where a condi-
tion is not imminently life threatening (e.g., testing for
glaucoma, which is a very slowly progressing dis-
ease), since there is less risk of an immediate misdiag-
nosis and the improvement in patient throughput/
avoidance of a potentially harmful or arduous test
may outweigh an initial misdiagnosis.
Tradeoff between medical and congestion consid-

erations. To further demonstrate the potential of
relaxing one criterion for significant gains in the other,
we compare several points that fall outside either the
medical or congestion adoption region; see Points 1–3
in Figure 5. Table 3 reports the performance metrics
for these points using routing policies solved from the
MDP. Note that the misdiagnosis rate reported here is
for system-level misdiagnosis, which is the proportion
of patients who get a false negative result (incorrectly
discharged) among all the PE-suspected patients.1

Our main observations are:

Figure 5 Test Adoption Decisions with a = 3% (for Low-risk Only) and
b = c = 7.5%. The performance metrics for points 1–3 are
reported in Table 3
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• Comparing Points 1 and 2, Point 2 relaxes the
medical criterion and would be rejected under
the current medical guidelines. However, Point
2 still lies within the operational adoption
region. We see that Point 2 only increases the
system-level misdiagnosis rate from 2% to 3%
while providing significant operational gains
compared to Point 1. The throughput time for
all ED patients and PE patients can be reduced
by 22 and 41 minutes respectively. Further-
more, CT turnaround (time to get a CT) is
reduced by 10 minutes per patient, and more
unnecessary CT scans are avoided (82% rather
than 49%), potentially saving lives by avoiding
a reaction to the CT dye and exposure to
radiation.

• In contrast, Point 3 lies in the region where the
new test is not adopted under the congestion
criterion but is adopted under both the medical
and operational criteria. This is because misdi-
agnosis rate is dramatically reduced (to 0.07%)
although the throughput time is slightly
increased, though it is still better than using the
CT alone. This further illustrates how the opera-
tional criterion weighs the tradeoff between the
congestion and the system-level misdiagnosis
rate.

Insights for medical research. A key reason for the
significantly larger adoption region based on the
operational cost-based criterion, in contrast to the
adoption region under the medical criterion only, is
that this operational criterion accounts for the conse-
quences of using the CT (e.g., stroke and death)—this
was a primary motivation for our clinical collaborator
in developing a new test for PE. The medical criterion
only focuses on the individual-level misdiagnosis
rate. This is reflected in the fact that, despite the medi-
cal criterion being relaxed more significantly in Point
2, the misdiagnosis rate is counterbalanced by the CT
avoidance and the shortened throughput time. This
analysis highlights the shortsightedness of consider-
ing only the individual-level misdiagnosis rate in
evaluating the benefits of new medical research; new
tests should be considered in the broader, system con-
text in which they will be used, not just as standalone
diagnostics. Our framework allows managers to qual-
itatively weigh the costs of misdiagnosis with the ben-
efits of CT avoidance as well as the system benefits to

ED patients needing a CT and doctor workload levels,
all of which impact quality of care.
More broadly, from the shape of these adoption

regions, one can derive focused guidelines regarding
which aspects of a new test medical researchers
should target to increase chances of adoption into
clinical practice. Interestingly, specificity impacts both
medical and congestion adoption, whereas sensitivity
has little impact on reducing doctor workloads and
patient delays. This indicates that, perhaps specificity
has been undervalued in medical research develop-
ment. Specifically, if rejection by physicians due to
increased workload is a major concern, researchers
should focus on almost exclusively on specificity to
reduce double testing as sensitivity has little impact
on reducing doctor workloads; see the slope of the
congestion boundary. On the other hand, if misdiag-
nosis is more of a concern, then researchers should
focus more on sensitivity, though, while specificity has
less impact on the medical adoption it still plays a
role.

6.2.2. Impact of Integration of Test into ED
Workflow. We conclude the discussion of medical
research adoption by examining the impact of how
new diagnostic tests are integrated into clinical work-
flow. For comparison with the MDP’s dynamic rout-
ing policy, we consider a static policy that mimics the
practice suggested by the medical literature for diag-
nosing PE; this policy routes only low-risk patients to
the new test (D-dimer) and all others directly to the
current test (CT).
Impact of integration on congestion boundary.

Figure 6(a) shows the adoption region under the con-
gestion criterion for different integration policies and
different service rates. The solid (dotted) line shows
the adoption boundary under the dynamic (static)
routing policy. This partition shows that the simpler
static policy requires a higher level of specificity due
to the impact of double testing of patients who do not
actually have the suspected disease (PE). In contrast,
the dynamic policy avoids routing patients to the new
test when the new test is highly congested because
the long waiting time for the new test will signifi-
cantly increase the impact of double testing.
Moreover, when the test is slower, the manner of

integration into practice has a more significant impact
on the level of accuracy that the test must achieve to

Table 3 Performance Metrics Under Different Test Characteristics. Points 1–3 are Plotted in Figure 5

No % CT avoidance Misdiag - Sick E½T � E½TPE� CT TAT (hr) Avg cost

1 49% 2% 2.02 1.89 2.08 146.47
2 82% 3% 1.65 1.21 1.91 129.65
3 31% 0.07% 2.29 2.37 2.24 154.92
CT Only 0% 0% 2.44 2.44 2.44 166.13
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be suitable for adoption, indicated by the larger sepa-
ration between the static and dynamic policies (the
two vertical lines to the right). Thus, focusing on test
speed during the research process can mitigate some
of the drawbacks of using a simpler operational pol-
icy in clinical practice and make the test more widely
adoptable for hospitals without the means to develop
and implement more sophisticated routing policies.
Impact of integration on medical boundary. Fig-

ure 6b shows the adoption regions based on system-
level and individual-level (myopic) misdiagnosis
rates. The light grey region shows the adoption region
using a system-level misdiagnosis rate of <2% and the
optimal, dynamic policy (using the baseline cost
parameters in Table 2). We use a 2% system-level
because this roughly corresponds to a 3% individual-
level misdiagnosis rate using the static policy (aver-
aged across different sensitivity and specificity combi-
nations). The area above the solid line represents the
adoption region using the 2% system-level misdiag-
nosis rate and the static policy. For comparison, we
also plot the dashed line for the medical criterion, that
is, the area above the dashed line represents the adop-
tion region where the individual-level misdiagnosis
rate is <3%.
This figure demonstrates the myopic nature of the

individual-level misdiagnosis criterion. Compare the
two lines (dashed and solid) that represent the static
policy under system and individual-level criteria.
The individual-level medical criterion underesti-
mates the benefit of the new test at lower specifici-
ties, while it overestimates the benefit of the new test
at higher specificities compared with the more holis-
tic system-level misdiagnosis criterion. This is
because the individual-level criterion is conditional

on a patient receiving a negative test result, which is,
in some ways misleadingly, a function of the number
of false positives. Reducing false positives increases
the total number of negatives and increases the
chance of adoption under the medical criterion (it
reduces the left-hand side of Equation (3)). However,
at the system level, false positives are eventually
ruled out by the CT so the overall number of
patients that are misdiagnosed remains unchanged
regardless of the specificity. This leads the individ-
ual-level criterion to overvalue a test with high speci-
ficity and undervalue a test with low specificity in
the larger context of the testing system. Hence, a sys-
tematic evaluation framework such as the one devel-
oped in this study is critical for evaluation of a new
test in the system context.
Comparing the gray region with the solid line, we

see that the dynamic policy accentuates the mismatch
between the system-level and individual-level crite-
ria. This is because when specificity is high, the test is
used more frequently by the dynamic policy to better
avoid the negative health consequences of unneces-
sary CT scans; high specificity implies less chance of
ordering an unnecessary CT. With greater usage of
the test, a higher sensitivity is needed to ensure the
misdiagnosis rate remains low, particularly if the test
is used on medium and high risk-level patients. This
further highlights the myopic nature of considering a
new test in a vacuum. When specificity is low, static
policies undervalue the new test because they are not
able to adjust the usage of the test to account for the
implications of double testing. The dynamic policy,
on the other hand, will use a lower specificity test less
frequently, leading to lower overall misdiagnosis
rates by increasing the usage of the more accurate CT.

(a) (b)

Figure 6 Integration into Clinical Workflow (a) Impact of routing policies on the congestion adoption boundary. the boundaries when l1ðxÞ ¼ 0:96x
are shown in the left two curves and the ones when l1ðxÞ ¼ 0:41x are shown in the right two curves (b) Impact of routing policies on
medical adoption boundary. the grey boxes are for regions when the system-level misdiagnosis is below 2% for the optimal routing
policy, while the solid line is the boundary for 2% under the static policy
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7. Sensitivity Analyses: Impact of Test
Characteristics and ED Environment

In section 7.1, we conduct a detailed performance
analysis to show how different test characteristics
affect medical and congestion performance metrics.
When varying each characteristic dimension, we com-
pare the dynamic and the static policy. These analyses
shed light on what features researchers should focus
on to improve certain performance metrics and
whether using a simple routing policy is sufficient (or
not) to derive much of the value of a new test. In sec-
tion 7.2, we generalize our analysis to clinical settings
beyond our collaborating ED, by considering a broad
set of clinical environments.
The key findings from this section are summarized

as follows. First, we find that improving test charac-
teristics may not improve the performance measures
most closely related to that characteristic. For exam-
ple, improving sensitivity and specificity can lead to
greater misdiagnosis rates and improving test speed
can lead to longer throughput times. Second, sensitiv-
ity primarily affects medical value while specificity
affects operational value, providing guidance on
which features to focus on depending on adoption
concerns. Third, when the new test is sufficiently fast,
the static policy performs almost as well as the
dynamic policy, which has implications for ease of
adoption. Finally, extending our analysis to a broad
range of clinical environments, we find that the only
major driver of the size of the adoption regions is the
speed of the existing test; the results are relatively
insensitive to all other system parameters.

7.1. Impact of Test Characteristics
In this section, we consider introducing an arbitrary
new test for PE (D-dimer being a special case) and
study how test characteristics affect different opera-
tional and medical performance metrics in the ED.
We plot the performance changes when varying one
dimension of the test characteristics (l1ðxÞ, bþ, or b�)
over a continuous spectrum while fixing the other
two characteristics at selected levels. All other param-
eters remain the same as the baseline scenario shown
in Table 2. In the interest of space, we relegate all the
detailed analysis to Appendix D.4 and only highlight
the main findings below.
The key finding in this section is that improvements

in each of the test characteristics have mixed results on
performance in the clinical environment; positive or
negative. Surprisingly, improved test speed can actu-
ally increase throughput time and doctor workload,
while improved sensitivity and specificity can
increase the system misdiagnosis rate. This occurs
because improvements in test characteristics univer-
sally increase the usage of the new test, which brings

with it the drawbacks of misdiagnosis (not being as
good as the primary test) and double testing. These
drawbacks are balanced by avoidance of the adverse
effects associated with unnecessary CT scans and an
eventual reduction in workload by avoiding the more
congested CT. Once a threshold is reached, further
improving test characteristics counteracts these draw-
backs, resulting in increasing reductions in workload
and misdiagnosis.

7.2. Extension to Other Clinical Environments
In this section, we evaluate our framework under set-
tings beyond our collaborating ED. We vary multiple
environmental factors (arrival rates, service rate of the
existing primary test) and patient characteristics (pre-
test probability and patient mix). Table 4 summarizes
the clinical environments we study.
Key environmental factors. We perform a full-fac-

torial analysis with all combinations of the parameter
settings in Table 4, and then conduct ANOVA to iden-
tify the factors that affect the adoption regions most
significantly; see Appendix D.5 for the complete
details. In general, the adoption regions are not sensi-
tive to the environmental factors and patient charac-
teristics in our analysis. This indicates that the
insights found in the previous sections (under the
baseline ED settings) are generalizable to a broader
range of clinical environments.
The ANOVA shows that the service rate at the

existing (primary) test, l2ðxÞ, is the most important
factor for all adoption regions; the influence of other
factors is much smaller. Our sensitivity analysis also
shows that the queueing structure of station 2 plays
an important role in the system performance. Next,
we explore the impact of these two significant factors:
(i) l2ðxÞ in the processor-sharing setting; and (ii) dif-
ferent queueing structures for station 2. We also study
the impact of time-varying arrivals at the end of this
section.
Impact of l2ðxÞ. To illustrate the impact of the

speed of the current test (baseline setting vs. a slower
speed l2ðxÞ ¼ 0:47x0:5), we vary the l1ðxÞ, bþ and b�

of the new test and observe the performance metrics of
cost reduction, throughput time, and misdiagnosis.

Table 4 Parameter Settings

Low High

l2ðxÞ 0:47x0:5 0:9x 0:5

Patient mix 20%,44%,36% 80%,16%,4%
Pretest probability 5%,15%,20% 5%,30%,45%
Total arrival rate 1.71 1.91
Proportion of external arrival 0 0.62

Notes: The Bold Value in Each Row is the Same as that in the PE Setting
in Section 6. Diagnostic Costs and Unit Holding Cost are Same as in
Table 2, and l1ðxÞ ¼ 0:96x
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Compared to the baseline case, we observe the largest
changes when varying l1ðxÞ; varying bþ and b� of the
new test gives similar insights as in the baseline
setting.
Figure 7 plots the performance metrics—cost reduc-

tion, throughput time, and misdiagnosis—under the
slower speed l2ðxÞ ¼ 0:47x0:5 when we vary the ser-
vice rate of the new test, l1ðxÞ. We make two main
observations. First, when the current test is slower,
routing just a fraction of patients to the new test can
help alleviate overall congestion due to the convex
nature of waiting times as a function of utilization at
the existing test (e.g., CT). Thus, introducing a new
test and/or improving the new test speed has a
greater impact on cost reduction; see Figure 7a. The
significant improvement in the congestion metrics
can also be observed from the significant reduction in
the ED throughput time in Figure 7b. Second, in con-
trast with the baseline case (Figure 12c in
Appendix D.4), we see in Figure 7c that, if the current
test is slower, the dynamic policy dominates the static
policy in terms of current test avoidance. This is
because the dominating effect of workload reduction,
combined with the benefits of current test avoidance,
leads to far greater usage of the new test and hence
far fewer patients being sent to the existing test. These
observations again highlight the importance of con-
sidering a new test within the overall clinical environ-
ment.
Impact of queueing structure at station 2. Next, we

consider alternative queueing structures M/M/1
(with l2ðxÞ ¼ 1:91) andM/M/k for station 2. Figure 8
plots the performance metrics—cost reduction,
throughput time, and misdiagnosis—when we vary
the service rate of the new test, l1ðxÞ. Comparing Fig-
ure 8a with Figure 7a, we observe an even more sig-
nificant cost reduction using the dynamic and static
routing policies over the CT only policy. This is
because the M/M/1 queue is more sensitive to the
workload since the single server suffers more from
the variability in service time. As a result, diverting a

small number of patients to the new test can greatly
alleviate the congestion at CT. This is also shown in
Figure 8b: even for the slowest service rate of the new
test (l1ðxÞ ¼ 0:2x), introducing the new test reduces
the throughput time. In other settings the throughput
time actually increases over the CT only policy when
the new test is slow, for example, Figure 7b. When
using anM/M/3 queue for station 2, the performance
metrics are closer to those under the baseline setting.
This is likely due to the fact that the M/M/3 queue
produces a similar CT occupancy level as the proces-
sor-sharing queue used in the baseline experiments;
see Figure 10 in Appendix D.3. In addition, we also
consider an M/M/K(t) setting for station 2 where the
number of servers is time-varying. Specifically, we
create a model with three CTs available during the
day shift and two CTs during the night shift. This set-
ting produces an occupancy distribution that matches
the empirical distribution better than any of the M/
M/n models. The performance in this setting, though,
is similar to the performance in the M/M/3 setting.
See Appendix D.3 for the detailed numerical results.
The key takeaway from this analysis of different
queueing models is that our framework is flexible
enough to capture a wide variety of testing structures
that may occur in practice. This suggests that our
methods can be applied to a wide range of testing
systems.
Impact of time-varying arrivals. Lastly, we con-

sider the impact of time-varying arrivals. Incorporat-
ing time-varying arrivals requires expanding the state
space to include a time component, leading to a con-
tinuous state space. It is known that exactly solving
time-varying MDPs is non-trivial (Marecki et al. 2006,
McMahon 2008) except for settings with restricted
value functions (Boyan and Littman 2000). Thus, we
adopt a commonly used technique, Pointwise Station-
ary Approximation (PSA), to tackle this challenge
when the arrival rate function is periodic. The main
idea of PSA is to first partition the time period into
several intervals, and then solve the stationary

(a) (b) (c)

Figure 7 Impact of New Test Service Rate when l2ðxÞ ¼ 0:47x 0:5 (a) Cost reduction (b) Throughput time (c) % of Patients Avoiding CT
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version of the MDP using the average arrival rate
from each interval. When making a decision, we use
the policy from the corresponding time interval. Fig-
ure 9 in Appendix D.2 plots the time varying arrivals
from our partner ED as well as the arrival rates used
in our PSA, which leads to a piecewise-linear policy
for different time intervals. Yoon and Lewis (2004)
provide mathematical justification for the use of PSA
admission control in time-varying MDPs.
In the numerical experiments, we apply the PSA

solution to the simulated system where the time-vary-
ing arrival process is used, and we compare its perfor-
mance with those from the CT only policy and the
static policy. We find that, under time-varying arri-
vals, the dynamic policy achieves a larger magnitude
of improvement over the CT only policy and the static
policy. Hence, the adoption region is larger than that
in the stationary setting. However, the magnitude of
improvement is not overly large, which is consistent
with our previous findings from the ANOVA in
which the adoption regions were found to be rela-
tively insensitive to the arrival rate. The detailed
numerical results are relegated to Appendix D.3.

8. Conclusions

We study the bridge between medical research on
diagnostic testing and the clinical workflow in which
the diagnostic test will be used. The gap between the
two can lead to rejection of valuable medical research
by the clinical community due to increased workloads
and/or a misunderstanding of the system-level bene-
fits of the new test. We define a new operational crite-
rion for adopting medical research in practice that
accounts for doctor workload and patient delays in
addition to medical outcomes, including outcomes
that are not currently considered in evaluating a new
test. Using an MDP to model the clinical workflow
and to capture complex tradeoffs on both the individ-
ual and system levels, we identify adoption regions

that specify the combination of test characteristics that
test must achieve for the research to be feasible for
adoption in practice, which can provide guidance for
the medical research development process. The MDP
also allows us to study the impact of how the new test
is used in practice on adoption decisions. To solve the
MDP, we develop a decomposition heuristic and
derive structural properties that shed light on when
and for which patients a new diagnostic test should
be used.
Via a comprehensive case study with real-world

data leveraging the computationally efficient heuris-
tic, we show that the conventional medical criterion
can lead to poor decision making in both research
development and clinical practice. This myopic view
of medical research can lead to overvaluing or under-
valuing new tests. A test with high sensitivity can be
overvalued by researchers as it is found to be accept-
able in the laboratory only to be rejected in practice
due to operational inefficiency, whereas a test with
lower sensitivity may be undervalued and rejected in
the laboratory setting despite potential benefits in the
clinical environment, where it can lead to a reduction
in the use of expensive and potentially harmful exist-
ing tests. Moreover, the current medical criterion not
only ignores the operational impact of the new test, it
also surprisingly overestimates the new test’s system-
level misdiagnosis rate, leading to unnecessary rejec-
tion of new research. Furthermore, it fails to account
for system-level implications of the new test, which
can help avoid adverse effects of unnecessary testing
with the existing diagnostic equipment. All these mis-
matches are accentuated when a simple static policy
is used to integrate research into the clinical environ-
ment instead of using our more nuanced MDP policy.
Similarly, the individual level misdiagnosis criterion
used in practice underestimates the benefit of new
tests with lower specificities, while overestimating the
benefit of new tests with higher specificities, with sim-
ilar consequences for adoption in practice. We find

(a) (b) (c)

Figure 8 Impact of New Test Service Rate when Using the M/M/1 Queue Setting for Station 2 with l2ðxÞ ¼ 1:91 (a) Cost Reduction (b) Throughput
time (c) % of PATIENTS avoiding CT
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that specificity has a much larger impact than
previously understood, and that using specificity as
only a secondary consideration in medical research
development can lead to poor adoption decisions in
practice.
Our framework provides easily interpretable guide-

lines for medical research development, diagnostic
test design, and clinical adoption decisions in the
form of adoption regions. These regions can guide
medical research as to which test characteristics to
focus on to improve chances of adoption in practice,
bridging the gap in the current research practice that
often fails to consider the broader clinical context in
which the test will be used. In general, we find that
increasing sensitivity supports medical value cre-
ation, whereas increasing specificity (which is not cur-
rently a primary focus of medical research) supports
operational value and greater opportunities for adop-
tion, which is especially important for slower tests.
On the medical side, specificity has mixed results:
trading off increased individual misdiagnosis rates
with improved avoidance of an expensive and/or
harmful primary test. When tests are slower, we also
find that the manner of integration plays an important
role, whereas a simple static policy (as in current
practice) can gain much of the benefits if the new test
is sufficiently fast. These findings can also guide the
medical research process by focusing efforts based on
specific concerns about adoption.

Note

1The medical boundary in Equation (3) is the proportion
who received a false negative result, conditioning on the
result being negative. This is why, although point 1 is on
the medical boundary for 3%, the misdiagnosis rate is not
3% since not all patients are sent to the new test and not
everyone gets a negative result. The system-level misdiag-
nosis rate reflects the impact of routing (which patients
are sent to the new test), while the medical misdiagnosis
rate is unaffected by routing policy.
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